Counting smooth solutions to the equation A +B =C
نویسندگان
چکیده
منابع مشابه
The solutions to the operator equation $TXS^* -SX^*T^*=A$ in Hilbert $C^*$-modules
In this paper, we find explicit solution to the operator equation $TXS^* -SX^*T^*=A$ in the general setting of the adjointable operators between Hilbert $C^*$-modules, when $T,S$ have closed ranges and $S$ is a self adjoint operator.
متن کاملSolutions of the Diophantine Equation AA + B 4 = C 4 +
A survey is presented of the more important solution methods of the equation of the title. When space permits, a brief description of the methods and numerical examples are also given. The paper concludes with an incomplete list of 218 primitive nontrivial solutions in rational integers not exceeding 106.
متن کاملDiagonal and Monomial Solutions of the Matrix Equation AXB=C
In this article, we consider the matrix equation $AXB=C$, where A, B, C are given matrices and give new necessary and sufficient conditions for the existence of the diagonal solutions and monomial solutions to this equation. We also present a general form of such solutions. Moreover, we consider the least squares problem $min_X |C-AXB |_F$ where $X$ is a diagonal or monomial matrix. The explici...
متن کاملthe solutions to the operator equation $txs^* -sx^*t^*=a$ in hilbert $c^*$-modules
in this paper, we find explicit solution to the operator equation$txs^* -sx^*t^*=a$ in the general setting of the adjointable operators between hilbert $c^*$-modules, when$t,s$ have closed ranges and $s$ is a self adjoint operator.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the London Mathematical Society
سال: 2011
ISSN: 0024-6115
DOI: 10.1112/plms/pdr037